首页> 外文OA文献 >Jet Flavor Classification in High-Energy Physics with Deep Neural Networks
【2h】

Jet Flavor Classification in High-Energy Physics with Deep Neural Networks

机译:基于深度神经网络的高能物理射流风味分类   网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Classification of jets as originating from light-flavor or heavy-flavorquarks is an important task for inferring the nature of particles produced inhigh-energy collisions. The large and variable dimensionality of the dataprovided by the tracking detectors makes this task difficult. The currentstate-of-the-art tools require expert data-reduction to convert the data into afixed low-dimensional form that can be effectively managed by shallowclassifiers. We study the application of deep networks to this task, attemptingclassification at several levels of data, starting from a raw list of tracks.We find that the highest-level lowest-dimensionality expert informationsacrifices information needed for classification, that the performance ofcurrent state-of-the-art taggers can be matched or slightly exceeded bydeep-network-based taggers using only track and vertex information, thatclassification using only lowest-level highest-dimensionality trackinginformation remains a difficult task for deep networks, and that addinglower-level track and vertex information to the classifiers provides asignificant boost in performance compared to the state-of-the-art.
机译:将喷气机分类为来自轻味或重味夸克是推断高能碰撞产生的颗粒性质的重要任务。跟踪检测器提供的数据的大而可变的维数使此任务变得困难。当前最先进的工具需要减少专家数据,才能将数据转换为固定的低维形式,这些形式可以由浅层分类器有效地管理。我们研究了深度网络在此任务上的应用,从原始的轨道列表开始尝试在多个数据级别上进行分类。我们发现,最高级别的最低维专家信息会牺牲分类所需的信息,即当前状态的性能仅使用跟踪和顶点信息,基于深度网络的标记器可以匹配或稍微超过最新的标记器,仅使用最低级别的最高维跟踪信息进行分类对于深度网络而言仍然是一项艰巨的任务,并且添加较低级别的跟踪器和顶点与最新技术相比,分类器获得的信息可显着提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号